Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number

Glover and Punnen (1997) asked whether there exists a polynomial time algorithm that always produces a tour which is not worse than at least n!=p(n) tours for some polynomial p(n) for every TSP instance on n cities. They conjectured that, unless P=NP, the answer to this question is negative. We prove that the answer to this question is, in fact, positive. A generalization of the TSP, the quadra...

متن کامل

Polynomial Algorithms for the Tsp and the Qap with a Factorial Domination Number

Glover and Punnen (1997) asked whether there exists a polynomial time algorithm that always produces a tour which is not worse than at least n!=p(n) tours for some polynomial p(n) for every TSP instance on n cities. They conjectured that, unless P=NP, the answer to this question is negative. We prove that the answer to this question is, in fact, positive. A generalization of the TSP, the quadra...

متن کامل

New approximation algorithms for the TSP

The traveling salesman problem (TSP) is probably the best known combinatorial optimization problem. Although studied intensively for sixty years, the TSP continues to pose grand challenges. Cook’s [2012] recent book gives an excellent introduction. Since the TSP is NP-hard (Karp [1972]), it is natural to ask for approximation algorithms. How good solutions can we guarantee to find in polynomial...

متن کامل

Dominance guarantees for above-average solutions

Gutin et al. [G. Gutin, A. Yeo, Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number, Discrete Applied Mathematics 119 (1–2) (2002) 107–116] proved that, in the ATSP problem, a tour of weight not exceeding the weight of an average tour is of dominance ratio at least 1/(n − 1) for all n 6= 6. (Tours with this property can be easily obtained.) In [N. Alon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2002

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(01)00267-0